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Abstract

Fashion image editing is a valuable tool for designers to
convey their creative ideas by visualizing design concepts.
With the recent advances in text editing methods, significant
progress has been made in fashion image editing. However,
they face two key challenges: spurious correlations in train-
ing data often induce changes in other areas when editing
an area representing the intended editing concept, and these
models typically lack the ability to edit multiple concepts
simultaneously. To address the above challenges, we pro-
pose a novel Text-driven Fashion Image ediTing framework
called T-FIT to mitigate the impact of spurious correlation
by integrating counterfactual reasoning with compositional
concept learning to precisely ensure compositional multi-
concept fashion image editing relying solely on text descrip-
tions. Specifically, T-FIT includes three key components.
(i) Counterfactual abduction module, which learns an ex-
ogenous variable of the source image by a denoising U-Net
model. (ii) Concept learning module, which identifies con-
cepts in fashion image editing—such as clothing types and
colors and projects a target concept into the space spanned
from a series of textual prompts. (iii) Concept composition
module, which enables simultaneous adjustments of multi-
ple concepts by aggregating each concept’s direction vec-
tor obtained from the concept learning module. Extensive
experiments show that our method can achieve state-of-the-
art performance on various fashion image editing tasks, in-
cluding single-concept editing (e.g., sleeve length, clothing
type) and multi-concept editing (e.g., color & sleeve length).

1. Introduction

Fashion image editing has emerged as a pivotal field within
computer vision, driven by the increasing need for person-
alized and dynamic visual modifications in the fashion in-
dustry [1, 33]. The diversity and high-quality image genera-
tion capabilities of large-scale text-image diffusion models
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such as Stable Diffusion [23], DALL-E 2 [24], and Ima-
gen [22] has inspired many subsequent efforts to leverage
pre-trained large-scale models for text-driven fashion im-
age editing (TFIE) [12, 19, 32]. A foundational aspect of
this field is single-concept editing, where a specific concept
[35, 37] like color, texture, or style of an item is altered
while keeping the rest of the fashion image the same.

However, the existing methods still suffer from sev-
eral limitations. First, these methods [2, 6, 41] often en-
counter challenges related to spurious correlation and un-
wanted associations learned by the pre-trained model (e.g.,
Stable Diffusion [23]) due to biases in training data. For
example, several methods [28, 29] may erroneously as-
sociate a specific clothing type (e.g., sleeve length) with
a specific cloth style (e.g., garment length), as shown in
Fig. 1, resulting in unintended modifications outside the
target concept. This is because the long sleeves always
co-occur with long garments, inducing spurious correla-
tions in the training data. Therefore, eliminating spu-
rious correlations is critical to ensuring precise, isolated
modifications. There are many methods to address spu-
rious correlation [5, 11, 13, 31, 36, 38, 39]. For exam-
ple, Li et al. [16] propose a novel machine unlearning
method to reduce the instance weight of biased samples in
e-commerce and Sanchez et al. [25] discuss important chal-
lenges present in healthcare applications such as processing
high-dimensional and unstructured data, as well as temporal
relationships. However, due to differences in data structure
and final goal, previous methods could not be adapted to
image editing scenarios.

Second, existing methods [32, 33] are mainly limited to
editing the texture of fashion images, and it is difficult to
achieve non-rigid editing, such as precisely adjusting the
length of sleeves or skirts. As shown in Fig. 1, UltraEdit
[41] and Turbo-edit [6] cannot achieve non-rigid editing,
e.g., turning a long skirt into a mini skirt; altering short
sleeves into long sleeves, which may attribute to the poor
understanding of the concept from the prompt.

Third, existing methods [4, 14, 15] typically focus on
editing a single concept in the source image. While single-
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EX#1: What happens to the edited image if we change the "short sleeve" to "long sleeve"?

Original Image G & R LEDITS OURUltraedit

OURTurboedit

EX#2: What happens to the edited image if we change the "long skirt" to "mini skirt" and switch the fabric to "leather"?   

LEDITS++Original Image G & R

Figure 1. Two examples to illustrate the spurious correlation and
conceptual omission issues in fashion image editing. Unlike other
methods, our method alleviates the issue of over-editing that exists
in fashion image editing due to spurious correlation (e.g., sleeve
length and garment length, mini skirt and plaid style), as well as
the confusion or lack of concepts when editing multiple concepts.

concept methods enable the modification of multiple con-
cepts sequentially, i.e., changing the concepts one by one,
they present certain drawbacks. Specifically, these meth-
ods either introduce concept omission due to the difficulty
of identifying each concept from the prompt; or they lead
to unexpected changes due to interactions between differ-
ent concepts, which is still caused by spurious correlation
[10]. For example, modifications made to later concepts
may affect previous modifications. From Fig. 1, we can ob-
serve that G & R [28] incorrectly adds a “leather bag” when
editing the skirt fabric to leather and LEDITS++ [2] causes
other unrelated attributes changes when changing the length
and fabric of the skirt, such as the color of the gloves.

To bridge this gap, we develop a Text-driven Fashion
Image ediTing framework (T-FIT) that relies solely on tex-
tual prompts, enabling users to perform both single- and
multi-concept editing on a single fashion image. Specif-
ically, T-FIT adopts Stable Diffusion [23] and introduces
a counterfactual abduction module to address the spurious
correlation and concept learning module with concept com-
position to achieve precise single- and multi-concept editing
as shown in Fig. 2. Our contributions are as follows:
• We reveal the issue of spurious correlation and concept

omission in fashion image editing and propose T-FIT, a
text-driven framework to address these issues.

• We propose counterfactual abduction (CA) to capture vi-
sual content and a concept learning module (CLM) to
identify and disentangle concepts, mitigating issues of
spurious correlation and non-rigid editing.

• We propose a concept composition strategy that enables
simultaneous, fine-grained editing across multiple con-
cepts by adjusting the weight of each learned concept to
address the concept omission problem.

• Extensive empirical evaluation, in terms of both auto-
mated and human assessment metrics, qualitatively and
quantitatively demonstrates that our T-FIT approach sig-
nificantly enhances the quality of fashion image editing.

2. Methodology
2.1. Problem Formulation

We first formulate the image editing problem as follows:
given a source fashion image IS , a corresponding text
prompt P that describes the contents of IS , a set of con-
cept prompts PCi = {pi0, pi1, . . . , piN−1} used to construct
a concept Ci (e.g., clothing type, color, fabric) that the user
wishes to edit, and a target text prompt P ′ describing the
final editing goal, our objective is to generate a new fashion
image IT by editing IS in alignment with P ′ while preserv-
ing other areas that are unrelated to the concept Ci.

2.2. Preliminary

In the context of fashion image editing, concepts
C = {C1, . . . , Ci, . . . , Cm} are a distinct and human-
interpretable feature or attribute within an image, encom-
passing elements like sleeve length, fabric type, color, and
cloth type. Each concept Ci contains mutually selected
attributes, where each attribute embodies certain shared
properties. For instance, the attributes “long sleeves” and
“short sleeves” collectively represent the concept of “sleeve
length”, while “woman” and “man” represent the concept of
“gender”. The concept representations s(C) can be derived
from the intermediate representation of some text-to-image
generative models (e.g., Stable Diffusion) pre-trained over
annotated datasets that link visual attributes to textual de-
scriptions [27, 35]. Here, s : C → Rd is the concept repre-
sentation function, where C is the concept space containing
all possible concepts, and Rd represents the representation
space with dimension d. Following [27, 35], we focus on
the compositional concepts, as defined in Definition 1.

Definition 1 (Compositional Concepts). For concepts
Ci, Cj ∈ C, the concept representation s : C → Rd

is considered compositional if there exist positive weights
wi, wj ∈ R+ such that:

s(Ci ∪ Cj) = wis(C
i) + wjs(C

j).

This definition indicates that the representation of the com-
posed concepts corresponds to the weighted sum of the indi-
vidual concept representations in the representation space.
Following this definition, this study aims to develop a
framework for learning and composing conceptual repre-
sentations from pre-trained text-to-image models (i.e., Sta-
ble Diffusion) to achieve flexible and targeted fashion image
editing based on these compositional concepts.

2.3. Counterfactual Abduction for Image Editing

To address spurious correlation issues inherent in existing
image editing methods, we introduce a counterfactual ab-
duction approach that employs an abduction loss to infer un-
known exogenous variables U for each image. These vari-
ables capture the additional visual content of source fashion
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Figure 2. Overview of our T-FIT for fashion image editing. We divide the entire editing process into two stages. In the first stage, we
perform counterfactual abduction to infer exogenous variables U that capture the core visual contents of the source fashion image. In
the second stage, we employ a concept learning module to discover the target concept from representation space and design a concept
composition strategy for combining multiple aspects of the fashion image, such as fabric, color, or pattern, while maintaining consistency
with the original image.

images, aiming to reduce uncertainty in fashion image edit-
ing and prevent unintended changes in the structure or iden-
tity of the source image. In other words, by incorporating
U , our method ensures that the edited fashion image IT in-
tegrates the influence of P ′ while retaining other unrelated
visual content from the source image IS unchanged, thus
addressing spurious correlation introduced in pre-trained
models from the causal perspective. Specifically, we train
the abductionU by optimizing the following Gaussian noise
regression, a process analogous to training the reversed dif-
fusion steps:

argmin
U

E(t,ϵ)||ϵ− ϵU (xt, t, εsrc)||22, (1)

where ϵ ∼ N (0, I) is the Gaussian noise, t ∈ [0, T ]
represents a sampled time step, ϵU represents a new de-
noising model trained on a pre-trained denoising U-Net,
wherein U is treated as a trainable parameter. All other
model parameters, aside from those of the denoising U-
Net, remain fixed during training. The text embedding
εsrc = ψ(P ) is obtained by a pre-trained CLIP text en-
coder ψ(·), and the noisy input at time t can be obtained by
xt =

√
αtx0+

√
1− αtϵ. Here, x0 = IS denotes the origi-

nal image and αt is a predefined variance schedule [20, 34].
Following [26], we parameterize U as the UNet LoRA

in ϵU , LoRA structure is incorporated across all attention
layers, convolution layers, and feed-forward layers, which
can be expressed byW ′ =W+βUA·UB . Here,W ∈ Rd×d

denotes the original weight matrix, UA ∈ Rd×r and UB ∈
Rr×d are low-rank matrices. Wang et al. [30] observed that
the larger the time step in the diffusion model, the better
the editable and the lower the fidelity. For this reason, the
annealing parameter β = 1−κ

T 2 (t− T )2 + κ is proposed to
improve the editability. In our experiment, the rank r is set
to 512, κ ∈ [0, 1] is a constant.

2.4. Compositional Concept Learning for Editing

Unfortunately, the abduction of U is inherently ill-posed
[26], often leading to overfitting to the specific P and x.
This overfitting reduces the editability of the generative
modelG(·, U) and may cause challenges like concept omis-
sion or confusion, where distinctions between concepts may
blur, or certain concepts might overshadow others. There-
fore, G(·, U) struggles to generate images that adhere to a
new prompt P ′. To address this, we introduce a concept
learning module that analyzes the representation space to
identify composable concepts. Additionally, we propose a
multi-concept composition strategy for flexible fashion im-
age editing, enabling single and multi-concept continuous
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edits. For example, our method can simultaneously modify
both the “sleeve length” (e.g., changing from long sleeves
to short sleeves) and the “color” of the clothing (e.g., tran-
sitioning from red to blue). The intensity of these edits can
also be adjusted, such as making the blue lighter or darker.
Concept Learning Module. Given a target concept Ci,
we aim to learn an interpretable direction vector ∆Ci

t at
time t. The learned direction vector allows us to control
the generation process by varying the latent xt in the de-
sired directions ∆Ci

t with weight wi, which is considered
as sinew = ssrc + wi∆C

i
t . Here, ssrc = ϵU (xt, t, εsrc),

εsrc = ψ(P ) is derived from pre-trained CLIP text encoder
ψ(·), and ϵU (xt, t, εsrc) is trained by counterfactual abduc-
tion and is fixed here. Specifically, we first define a set of
text prompts PCi = {pi0, pi1, ..., piNi−1} designed to elicit
distinct distributions for a target conceptCi while maintain-
ing a consistent distribution for another concept Cj . With-
out loss of the generality, we define pi0 as the source prompt
without redundant concepts. In essence, each prompt cap-
tures a unique representation of Ci while keeping the rep-
resentation of Cj consistent. For instance, when editing the
concept of “fabric,” we can formulate a series of prompts
like “a lace [fabric 0] dress,” “a silk [fabric 1] dress,” and “a
[fabric Ni − 1] dress.” These prompts are intended to gen-
erate variations in the fabric concept while keeping other
aspects, like dress type.

Then, to identify the direction vector for concept Ci, we
first define its representation space as RCi

t
:= span({υjt −

υ0t : j = 1, .., Ni − 1}). By leveraging the span of concep-
tual space, we enable the model to edit not just predefined
attributes, but also a broader range of related attributes.
For example, by defining a structured representation space
with “blue,” “green,” and “yellow,” our model can general-
ize to other colors in the spectrum, such as “red”. Here,
υjt = ϵU (xt, t, εj), each εj = ψ(pij) is derived from the
pre-trained CLIP text encoder ψ(·). Next, to compute the
projection matrix Mi for the Ci-space within this represen-
tation space, we start by constructing matrix Si as

Si
t := [υ1t − υ0t , ..., υ

Ni−1
t − υ0t ]. (2)

In addition, to align changes in the representation space
with the semantic structure of the concept space, we first
apply singular value decomposition (SVD) on Si

t , i.e.,
SV D(Si

t) = V i
t Σ

i
tU

i
t
T , to identify the principal orthogonal

semantic directions. We then select the top K components
of V i

t to capture the most significant semantic variations (for
simplicity, we denote this matrix as V i

t ), and construct the
projection matrix M i

t = V i
t V

i
t
T , which projects the con-

cept vector into RCi
t

and ensures that the changes in the
representation space are corrected and aligned with the key
semantic directions.

Finally, to derive the editing direction, we calculate the

score difference between source representation ssrc and tar-
get representation star as ∆st = star − ssrc. We then
project ∆st onto the spanned concept space using M i

t ,
yielding ∆Ci

t = ∆stM
i
t . This projection ensures the edit-

ing operation reflects the relevant semantic changes in the
concept space. The modified score can be achieved by

s = s∅ + λ(sinew − s∅), (3)

where λ is guidance scale, s∅ denotes the unconditional
score, is given by s∅ = ϵU (xt, t, ε∅) with ε∅ = ψ(“ ”).
In practice, we noticed that a few prompts are sufficient to
identify the concept direction, which is attributed to the gen-
eralization ability of the span spaceRCi

t
.

Algorithm 1 Compositional Concept Learning
Require: Diffusion model ϵU (xt, t, ε), pre-trained CLIP

text encoder ψ(·), guidance scale λ, concept weight
{w1, ..., wm}, covariance matrix σ2

t I , empty prompt
“ ”, source prompt P , target prompt P ′, prompts for
build concept space PCi = {pi0, . . . , pij , . . . , piNi−1}

1: Initialize sample xt ∼ N (0, I)
2: ε∅, εsrc, εtar = ψ(“ ”), ψ(P ), ψ(P ′) # Text embedding
3: εj = ψ(pij) # Concept text embedding
4: for t = T, ..., 1 do
5: s∅ ← ϵU (xt, t, ε∅) # Unconditional score
6: ssrc, star ← ϵU (xt, t, εsrc), ϵU (xt, t, εtar) # Con-

ditional score
7: ∆st = star − ssrc # Score difference
8: for i = 1, 2, ...,m do # m concepts
9: Si

t ←
[
ϵU (xt, t, ε1)− ϵU (xt, t, ε0),

ϵU (xt, t, ε2)− ϵU (xt, t, ε0), . . . ,
ϵU (xt, t, εNi−1)− ϵU (xt, t, ε0)

]
10: Compute the top-k left singular vectors Vi via:

SV D(Si
t) = V i

t Σ
i
tU

i
t
T

11: M i
t = V i

t (V
i
t )

T # Projection matrix
12: ∆Ci

t =M i
t∆st # Editing direction

13: end for
14: s ← s∅ + λ((ssrc + wi∆C

i
t) − s∅) # For single-

concept editing
15: s ← s∅ + λ

∑m
i=1((ssrc + wi∆C

i
t) − s∅) # For

multi-concept editing
16: xt−1 ∼ N (xt − s, σ2

t I)
17: end for

Concept Composition Strategy. Now, our method en-
ables single-concept editing for fashion images, but many
scenarios demand multi-concept compositional editing. A
straightforward way to achieve this is to create a multi-
concept space using a set of concept prompts. While fea-
sible, this approach limits fine-grained control over individ-
ual concepts, such as adjusting shades of color in specific
items. Alternatively, sequential single-concept edits can be
applied, but this accumulates errors and is time-consuming.
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Source Images LEDITS++G & R Turbo-edit UltraEditOurs TexFit

A woman wearing 
purple squared-

neckline long [silk] 
dress with long 

sleeves.

A man wearing a 
pink shirt and blue 

demin shorts 
[trouser].

A man wearing a 
pink [floral print] 

shirt and blue 
demin shorts.

A man wearing a 
white polo shirt 

[with long sleeves].

A woman wearing a 
black bandeau top 

and black [red] 
trousers

Figure 3. Qualitative comparison with the state-of-art methods in single concept editing.

To overcome these issues, we propose a controllable multi-
concept editing strategy. This strategy enables precise, si-
multaneous adjustments of multiple concepts by weighting
each concept’s direction vector, which is shown as

sm = s∅ + λ

m∑
i=1

(sinew − s∅), (4)

where sinew = ssrc + wi∆C
i
t , we can control the manip-

ulation strength of each concept. The whole algorithm is
shown in Algorithm 1.

3. Experiments
3.1. Experimental Setups

Implementation Details. In our work, all experiments are
conducted on a single NVIDIA RTX 4090 GPU with 24
GB of memory. Following the prior work [3, 4, 26], we
employ the official pre-trained Stable Diffusion v2.1-base
model as our foundational model, downsampling all images
to a resolution of 512 × 512 pixels for consistency across
experiments. For the counterfactual abduction phase, We
fine-tune the model on the single image using LoRA with
a rank of 512 for 100 epochs, employing the Adam opti-
mizer with a learning rate of 1e-4. To conserve memory,
we adopt the mixed precision [17] and gradient accumula-
tion strategies, setting both the accumulation step count and

batch size to 1. During the inference phase, we utilize the
DDIM sampling with 80 steps and a classifier-free guidance
scale of λ = 4. Additionally, we explore various values for
the concept weight wi within the range [1, 5] to control the
editing strength, where i represents the i-th edited concept.
Dataset. To comprehensively evaluate the performance of
our T-FIT in fashion image editing, we follow [14, 26, 40]
by collecting a diverse set of fashion images from Unsplash
1, including both full-body and half-body images. The se-
lected images comprise various clothing types, such as long
dresses, skirts, T-shirts, shorts, pants, and strapless tops.
Our evaluation encompasses a diverse set of editing con-
cepts, which include specific attributes (e.g., gender, color,
patterns, fabric texture) as well as broader elements such as
clothing type, garment length, and sleeve style. Each image
in the experiment is annotated withNi+2 prompts, consist-
ing of one prompt for the original image andNi+1 prompts
for target images.
Baselines. We conduct comparisons with existing repre-
sentative diffusion-based image editing methods, includ-
ing LEDITS [29], LEDITS++ [2], TexFit [32], Guide-and-
Rescale (G & R) [28], UltraEdit [41], and Turboedit [6].
Evaluation Metrics. To comprehensively evaluate the per-
formance of our T-FIT, we conduct assessments from both

1https://unsplash.com/
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A man wearing red 
[green] and black 

striped short-sleeved top 
and ripped jeans 

[shorts].

A man wearing a white 
[leopard print] polo shirt 

[with long sleeves].

A beige [green] 
[leather] trousers [skirt].

A man wearing red 
[green] and black striped 
short [long]-sleeved top 

and ripped jeans.

LEDITS++G & R Turbo-edit UltraEditOursSource Image TexFit

Figure 4. Qualitative comparison with the state-of-art methods in multiple concept editing.

objective and subjective perspectives. Objectively, we fol-
low the previous works [3, 8, 9] and use metrics in CLIP
embedding space: CLIP image similarity (CLIP-I) [21] to
measure identity preservation via calculate the cosine sim-
ilarity between the edited image and the original image,
and CLIP text-image direction similarity (CLIP-D) [7] to
evaluate the correspondence between image changes and
text changes. Subjectively, we qualitatively evaluate the fi-
delity of the edited images and their consistency with the
target prompts, supplemented by human preference studies
involving recruited volunteers from different disciplines.

3.2. Qualitative Evaluation

We show some qualitative experimental results in Fig. 3- 4,
from our experiments, we observe the following:
For single-concept fashion image editing, 1) several
methods, such as LEDITS++ [2], introduce unintended
changes to non-target areas, possibly due to spurious corre-
lation embedded in the pre-trained models from their train-
ing datasets. These correlations cause inaccurate concept
associations, leading to changes outside the intended edit-
ing area. For instance, in Fig. 3, line 2, LEDITS++ unex-
pectedly replaces the shoelaces with pink ones. Similarly,
in Fig. 3, line 5, UltraEdit [41] transforms a squared neck-
line into a V-neckline, Turbo-edit [6] alters the dress length.
2) G & R [28], and UltraEdit often confuse different ob-
jects. For instance, when attempting to change the color of

pants to red (Fig. 3, line 2), these methods inadvertently
modify unrelated elements, such as the color of the shirt or
hair. 3) TexFit’s effectiveness is significantly hampered by
its reliance on the accuracy of the recognized mask, which
restricts its applicability in fashion image editing. As shown
in the last column of Fig. 3, TexFit [32] either alters only lo-
calized information in the target editing area or excessively
expands the intended modification area. This results in un-
natural edits that disrupt the overall coherence of the image.
For multi-concept fashion image editing, 1) UltraEdit
[41], TexFit [32] often overlooks certain concepts in
multiple-concept editing scenarios. For example, in Fig. 4,
line 1, UltraEdit remains in top with short sleeves rather
than long sleeves; in Fig. 4, line 2, the trousers edit is
ignored. 2) G & R [28], TurboEdit [6], and LEDITS++
[2], demonstrate commendable performance in adhering to
user instructions. However, the edited images can exhibit
issues such as alterations to human poses or discontinuities
in the edited results. For example, when modifying sleeve
lengths, the transitions in the sleeve areas may appear in-
consistent or fragmented (Fig. 4, line 1). These problems
highlight the challenges in maintaining coherence and in-
tegrity in the edited images, despite following the provided
directives closely. 3) Several methods such as Turbo-edit
[6] and UltraEdit [41] may over-edit, making it difficult to
retain the details of the original image. For example, when
modifying pants into a skirt (Fig. 4, line 3), the edited
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image may change the length of the skirt as well as other
aspects such as the color and fabric of the top along with
the skirt. This phenomenon may be attributed to the spuri-
ous correlation that were learned by the pre-trained model
from the training dataset. Compared to the existing meth-
ods, our method excels in fashion image editing, and it can
directly control precise multi-concepts from text prompts
without additional input, such as masks or poses. The edited
image retains non-target areas, closely following the target
text while maintaining the consistency of the image. In ad-
dition, our method allows continuous editing adjustments
by adjusting the concept weight (Fig. 5), which provides
fine control over the editing strength. This results in high-
quality editing that is superior to the baseline model, espe-
cially for multi-concept fashion image editing.

3.3. Quantitative Evaluation

We quantitatively evaluate our T-FIT against baselines us-
ing both automatic metrics and human evaluations.
Automatic Metric Comparisons. We summarize the ex-
perimental findings in Tab. 1. Our method achieves state-
of-the-art results for single- and multi-concept fashion im-
age editing in CLIP-D, which demonstrates a significant ad-
vantage in terms of the accuracy and fidelity of our editing
results in following the text description. In terms of the
CLIP-I metric, our method demonstrates superior perfor-
mance compared to most competing approaches. Although
it slightly underperforms Turbo-edit [6] and TexFit [32] on
CLIP-I, this is due to specific limitations in these meth-
ods during multi-concept fashion image editing. Turbo-
edit often omits certain concepts, resulting in edited images
that closely resemble the source, thus boosting its CLIP-I
score. TexFit, on the other hand, struggles with precise edit
masking, often restricting changes to small areas and fail-
ing in non-rigid edits (e.g., changing long sleeves to shorts
or pants to shorts), leaving much of the image unaltered.
Overall, our method shows superior performance on objec-
tive metrics for both multi- and single-concept editing tasks.
Human Preference Study. In this section, we quantita-
tively evaluate our method with an extensive human per-
ceptual evaluation study. We first collect a diverse set of
30 fashion images and their corresponding text descrip-
tions, covering a range of clothing types (e.g., long sleeves,
short sleeves, dresses, pants, shorts), patterns (e.g., solid,
stripes, prints), and materials (e.g., cotton, denim, chiffon).
Then, we invite 36 volunteers to participate in the evalua-
tion. Each volunteer views the original fashion image, the
original description text, the target description text, and the
edited images generated by 6 different methods, including
ours. The volunteers rate the edited images based on two
criteria: (1) how well the edits align with the concepts spec-
ified in the target text and (2) the consistency of the non-
edited areas with the original image. Ratings range from

Table 1. Quantitative comparisons. The best results are bolded and
the second-best results are underlined, respectively.

Single concept Multiple concepts

Method CLIP-D CLIP-I CLIP-D CLIP-I

OUR 0.1433 0.9160 0.1152 0.9259
G & R 0.0905 0.9116 0.0539 0.9079
Turbo-edit 0.0821 0.9101 0.0967 0.9355
UltraEdit 0.0771 0.9056 0.0533 0.8974
LEDITS++ 0.0954 0.9160 0.0584 0.9115
Texfit 0.0346 0.9500 0.0463 0.9562

2 3 4 5 6 7
Text Alignment Ranking

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Im
ag

e 
Co

ns
ist

en
cy

 R
an

ki
ng

Our
G&R
LEDITS++
TurboEdit
UltraEdit-SD3
TexFit

Figure 5. Human preference study. Our method outperforms
baseline models in both text- and image alignment, demonstrating
significant advantages in fashion image editing.

1 to 8, with 1 representing the best performance and 8 the
poorest. We calculate the average ranks provided by each
participant, and the final results are displayed in Fig. 5. Our
findings indicate that our method surpasses baseline meth-
ods on both criteria, demonstrating enhanced fidelity in ex-
ecuting intended edits while maintaining consistency across
unaltered image areas.

3.4. Ablation Study

Next, we turn to an ablation study where we analyze the
effect of the different components inherent in our approach.
Specifically, we consider: (1) the effect of substituting the
CA with null-text inversion [18], (2) the effect of removing
CLM, (3) the effects of varying annealing parameter κ, and
(4) the influence of different weights on the editing results
of concepts. The visual results are provided in Fig. 6-8.

From these figures, it is evident that when T-FIT replaces
the CA with the null-text inversion module, the edited im-
ages exhibit a noticeable spurious correlation. For instance,
in Fig. 7, when the concept of “gender” is applied, the collar
of the clothing incorrectly changes from a “stand-up collar”
to a “round collar”. On the other hand, T-FIT is equipped
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wearing a pink 
[floral print] 

shirt and blue 
demin shorts.

Prompt Source Image

Figure 6. Qualitative ablation results. The last image shows the
result of T-FIT, and the other images show the result of T-FIT
without CLM and adjusting annealing parameter κ. Removing
CLM significantly reduces the model’s editability. Adjusting κ
still makes balancing editability and fidelity challenging.

w/o CLM Ours Source Image

A boy [girl] wearing a white shirt with long [short] sleeves.
  

A woman wearing a purple [blue] squared-neckline [lace] long [mini] dress with long sleeves.
   

Null-text Inversion

Figure 7. Qualitative ablation results. With CA, our model cap-
tures essential visual content from the original image, mitigating
the impact of spurious correlation in pre-trained data. CLM en-
sures that no editing concepts are overlooked during modifications.

solely with CA, it effectively preserves the visual details of
the source image and mitigates issues arising from spurious
correlation. However, this setup offers limited flexibility
for editing, even if we adopt varying annealing parameters
κ (see Fig. 6). This suggests that while CA effectively ad-
dresses the spurious correlation issues arising from the pre-
trained model, it is limited in its editability. When CLM
is added, T-FIT’s editability improves. This is attributable
to the CLM’s capability to identify disentangled concepts
within the representation space, which facilitates more flex-
ible and precise editing. Furthermore, as illustrated in Fig.
8, T-FIT addresses the issues of concept omission and con-
fusion through the multi-concept composite strategy, while
also providing fine control over the intensity of each con-
cept by adjusting individual concept weights. In our work,
the concept weights can be manually adjusted in the range
[1-5], with higher values indicating greater editing intensity
on that concept and vice versa. This offers greater control
and flexibility for fashion image editing of our method.

A woman wearing a white [C1] chiffon [C2] strapless [C3] long dress.

[C1] & [C2] 
& [C3]

[C1] & [C2]

[C2] & [C3]

[C1] Red

[C3]
Short-sleeved

[C2]
Chenille

Figure 8. Experimental comparison of varying concept weights
(from 1 to 5) on single- and multi-concept fashion image editing.
[C1], [C2], and [C3] mean different editing concepts, respectively.

4. Conclusion
In this paper, we introduce T-FIT, a novel framework for
fashion image editing. Our approach, which uses a single
fashion image and simple text description, supports both
single- and multi-concept image editing tasks. By incorpo-
rating counterfactual abduction and a concept learning mod-
ule, T-FIT effectively mitigates issues of spurious correla-
tion in the pre-trained model, enabling efficient, flexible,
and accurate text-driven image editing. Furthermore, T-FIT
allows fine-grained editing of complex fashion concepts by
adjusting concept weights. Extensive experiments confirm
the effectiveness of T-FIT and its components, demonstrat-
ing significant advantages over several existing methods.
Our future work will focus on enhancing editing accuracy
by incorporating visual information (e.g., style images) to
learn richer visual concept representations.
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